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Meanders

A meander is a simple closed
curve in the plane transversally
intersecting the horizontal axis.

Let M(N) be the number of
isotopy classes of meanders with
2N crossings.

The asymptotics of M(N) as
N → ∞ remains conjectural.
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Translation surfaces/Abelian differentials
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A translation surface is a polygon in
the plane with equal and opposite
sides identified via translation.

The metric is everywhere flat except
at the vertices where there are cone
points.

Equivalently: it is a Riemann surface
X equipped with an Abelian
differential ω ∈ H0(X ,KX ).

Cone points with angle 2π(k + 1) ↔
order k singularities of ω.

Riemann-Roch:
∑

i ki = 2g − 2.
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Half-translation surface/quadratic differentials
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A half-translation surface is a
polygon in the plane with equal and
opposite sides identified via
translation and rotation by π.

Equivalently: it is a marked Riemann
surface (X , p1, . . . , pn) equipped
with a quadratic differential
q ∈ H0(X ,K⊗2

X (p1 + · · ·+ pn)).

Cone points with angle π(k + 2) ↔
order k singularities of q.

Simple poles ↔ cone angles of π.

Riemann-Roch:
∑

i ki = 4g − 4.
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Moduli space and strata
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4π, k = 2
π, k = −1
π, k = −1

Q(−12, 2)

Consider all translation resp.
half-translation surfaces: Hg

resp. Qg ,n – the moduli space.

Stratified by singularity orders.
H(µ) resp. Q(µ) are “subsets”
with singularity orders encoded
by a partition µ.

Strata are complex orbifolds of
dimension 2g + ℓ(µ)− 1 resp.
2g + ℓ(µ)− 2.

Locally modelled on Cd - edges
define coordinates, hence there is
a natural volume.
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The Masur-Veech volume

Theorem (Masur, Veech)

The space of flat surfaces with fixed finite area has finite volume.

H1(µ) =

{
(X , ω) ∈ H(µ) :

i

2

∫
X
ω ∧ ω = 1

}
Q1(µ) =

{
(X , q) ∈ Q(µ) :

∫
X
|q| = 1/2

}

It can be shown that

VolQ1(µ) = 2 dimCQ(µ) · lim
N→∞

1

Nd
· #ST (Q(µ), 2N)︸ ︷︷ ︸
number of square-tiled
surfaces built from at

most 2N squares

.
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Volume computation preview

To compute volumes, we will:

▶ Associate polynomials PΓ to different volume contributions

▶ Apply an operator Z to evaluate volumes

▶ Sum all volume contributions

Z(b21b
5
2) = 2! · 5! · ζ(3) · ζ(6).
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Goal: Compute #ST (Q(µ), 2N)
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Cylinder decomposition

Every square-tiled surface has a unique horizontal cylinder
decomposition. Consider the following square-tiled surface in
Q(−12, 12).
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v2 v2v4 v4v5
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v4 v5

∈ R[32]
0,3

∈ R[12]
0,1

0

0

[32]

[12]

∈ G[12,32]
1,2

Note: Order k singularities correspond to (k +2)-valent vertices.
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Cylinder Decomposition
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Ribbon graphs

Ribbon graphs are graphs endowed with a cyclic ordering of
half-edges at the vertices.

GΘ = G
Θ̃
=

They define an embedding of the underlying graph onto an
oriented surface.

Figure: Embedding of GΘ̃ into a torus with 1 boundary

11 / 31



Metric ribbon graphs

We count metrics on ribbon graphs with fixed boundary lengths.
Let AG be the incidence matrix of a ribbon graph G . The space of
metrics is the convex polytope

PG (b) = {x ∈ RE(G)
+ : b = AGx}.

The number of integer metrics is

NG (b) = #
(
PG (b) ∩ ZE(G)

+

)
.

It is a polynomial in principal strata, and in general a piecewise
polynomial. The weighted count of metric ribbon graphs with

valence κ is

N κ
g ,n(b) =

∑
G∈Rκ

g,n

NG (b)
|Aut(G )|

.
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Example of metric ribbon graphs

The incidence matrix is
(
2 2 2

)
. The number of integer metrics

correspond to positive integer solutions to x1 + x2 + x3 = b/2.

NG (b1) =

(
b1/2− 1

2

)
=

(b1 − 4)(b1 − 2)

8
.
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Counting square-tiled surfaces of type Γ

Lemma: If κ has at least one odd component, the total number of
square-tiled surfaces in Q(µ) of type Γ ∈ Gκ

g ,n constructed from at
most 2N squares of size (1/2× 1/2) is

#ST Γ(Q(µ), 2N) =
2d · cκ
|Aut(Γ)|

∑
b,H∈NE(Γ)

b·H≤N
b∈LΓ

∏
e∈E(Γ)

be ·
∏

v∈V (Γ)

Nv (b)

where Nv (b) counts the number of ways cylinders of width bi can
be glued at vertex v . In particular, it is

Nv (b) = N κv
gv ,nv ((be)e∈Ev (Γ))

14 / 31



Proof
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Special case

Lemma
Suppose the top degree of the summand is a polynomial. Define

PΓ =
1

2#V (Γ)−1
· 1

|Aut(Γ)|
·
∏

e∈E(Γ)

be ·
∏

v∈V (Γ)

Nv (b).

The volume contribution of type Γ is given by

Vol(Γ) = Cκ · Z(PΓ)

where Z is defined by

Z :
k∏

i=1

bmi
i 7→

k∏
i=1

mi ! · ζ(mi + 1).
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Why does the zeta function appear?

A small case: ∑
b,H∈N
bH≤N

bm =
∑
H∈N

∑
b∈N

b≤N/H

bm

≈
∑
H∈N

∫ N/H

0
bmdb

=
Nm+1

m + 1

∑
H∈N

1

Hm+1

17 / 31



Extention to a piecewise polynomial

Lemma
Suppose PΓ is a piecewise polynomial of the form

bm1
1 · · · bmk

k 1{b1=2b2}

The volume contribution of type Γ is given by

Vol(Γ) = Cκ · Z(PΓ)

where Z is defined by

Z

(
k∏

i=1

bmi
i 1{b1=2b2}

)
= (m1+m2)! · ξ(m1,m2)

∏
i≥3

mi ! · ζ(mi +1),

ξ(m1,m2) := 2m1ζ(m1 +m2)− (2m1 + 2−m2−1)ζ(m1 +m2 + 1).
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Example: Q(−12, 2)

G[12,4]
1,2 PΓ 7→ C[12,4] · Z(PΓ)

0

[12,4]

1
20

· 1
2 · b1 · N [12,4]

0,2 (b1, b1)

=
b21
2 7→ 8ζ(3)

0 0

[4] [12]

1
21

· 1
2 · b1b2 · N [4]

0,3(b1, b1, b2) · N
[12]
0,1 (b2)

= b1b2
4 · 1{b2=2b1} 7→ 8ζ(2)− 9ζ(3)

1 0

[4] [12]

1
21

· 1 · b1 · N [4]
1,1(b1) · N

[12]
0,1 (b1)

=
b21
16 7→ ζ(3)

VolQ(−12, 2) = 8ζ(3) + 8ζ(2)− 9ζ(3) + ζ(3) =
4π2

3
.
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Volumes of principal strata

Principal strata of Qg ,n take the form Q(−1n, 14g−4+n).

Simple poles ↔ univalent vertices
Simple zeros ↔ trivalent vertices

There is a deep connection between counts of trivalent ribbon
graphs (which can be extended to include univalent vertices) and
intersection theory on the moduli space of curves due to
Kontsevich.
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Intersection Numbers

The tautological line bundles Li are given by T ∗
pi
X at X ∈ Mg ,n.

The ψ-classes ψi are given by c1(Li ) ∈ H2(Mg ,n;Q).

The intersection numbers for d1 + · · ·+ dn = 3g − 3 + n are

⟨τd1 · · · τdn⟩ =
∫
Mg,n

ψd1
1 · · ·ψdn

n

Examples: ⟨τ30 ⟩ = 1 and ⟨τ1⟩ = 1
24 .

In 1991, Witten conjectured that a generating function involving
the intersection numbers satisfies a certain series of differential
equations called the KdV hierarchy from mathematical physics.

In 1992, Kontsevich proved this conjecture... using ribbon graphs!
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In 1992, Kontsevich proved this conjecture... using ribbon graphs!
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Counts of trivalent ribbon graphs

Kontsevich proves the Main Identity:

∑
d∈Nn

0
|d |=3g−3+n

⟨τd1 · · · τdn⟩
25g−5+2n

n∏
i=1

(2di )!

λ2di+1
i

=
∑

G∈Rtri
g,n

1

|Aut(G )|
∏

e∈E(G)

1

λ̃(e)

Define the Kontsevich volume polynomials

Ng ,n(b1, . . . , bn) =
∑
d∈Nn

0
|d |=3g−3+n

⟨τd1 · · · τdn⟩
25g−6+2nd1! · · · dn!

b2d11 · · · b2dnn .

Using Norbury’s lattice point counts, we obtain:

Ng ,n(b1, . . . , bn) = Ng ,n(b1, . . . , bn) + lower order terms.
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The combinatorial moduli space Mcomb
g ,n

b1 b2

b3

Respkq = 2πibk

b1 b2
b3

Mg ,n × Rn
+ = {decorated curves}

{Strebel differentials}

Mcomb
g ,n = {metric ribbon graphs}

=
∐

G∈Rg,n

PG/Aut(G )
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Kontsevich’s proof (part 1)

Consider the projection π : Mcomb
g ,n

∼= Mg ,n × Rn
+ → Rn

+.

We are interested in the volume of Mcomb
g ,n (b) = π−1(b) ∼= Mg ,n

– the subspace of metric graphs with boundary lengths b.

Kontsevich constructs a symplectic form Ω which can be written as∑
i b

2
i ψi on each fibre Mcomb

g ,n (b).

Integrating the top form expΩ = Ω3g−3+n

(3g−3+n)! gives the symplectic
volume:

V S
g ,n(b) =

∫
Mg,n(b)

expΩ =
∑
d∈Nn

0
|d |=3g−3+n

⟨τd1 · · · τdn⟩
d1! · · · dn!

bd11 · · · bdnn .
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Kontsevich’s proof (part 2)

ℓ(e)

PG

PG (b)

expΩ

∧
i dbi

∧
e dℓ(e)

The top form expΩ defines the
symplectic fibre volume V S

g ,n(b).

Taking the Laplace transform
allows us to integrate the top
form expΩ

∧
i dbi in Mcomb

g ,n .

The top form
∧

e dℓ(e) defines
the Euclidean volume V E

g ,n(b).

Kontsevich proves the ratio of measures is ρ = 25g−5+2n, hence
V E
g ,n(b) is a constant multiple ρ of V S

g ,n(b).

We now know how to count trivalent ribbon graphs!
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Counting trivalent ribbon graphs with univalent vertices

We also need to count ribbon graphs with univalent vertices.

Theorem
Let Ng ,n,p(b1, . . . , bn) be the weighted count of trivalent integral
metric ribbon graphs with p univalent vertices. Then

Ng ,n,p(b1, . . . , bn) = Ng ,n+p(b1, . . . , bn, 0, . . . , 0︸ ︷︷ ︸
p

)+lower order terms.

This uses the string equation

⟨τ0τd1 · · · τdn⟩g ,n+1 =
n∑

i=1

⟨τd1 · · · τdi−1 · · · τdn⟩g ,n

and Kontsevich’s Main Identity.
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Volume formula for the principal strata

Theorem
The volume of the principal stratum Q(−1n, 14g−4+n) is

VolQ(−1n, 14g−4+n) = Cg ,n ·
∑

Γ∈Gg,n

Z(PΓ)

where

PΓ =
1

2#V (Γ)−1
· 1

|Aut(Γ)|
·
∏

e∈E(Γ)

be ·
∏

v∈V (Γ)

Ngv ,nv+pv ((be)e∈Ev (Γ), 0
pv )

and

Cg ,n =
25g−6+2n(4g − 4 + n)!

(6g − 7 + 2n)!
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Example: Volume of Q(−1, 15)

Stable graphs in G2,1:

1
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0

01

10

10
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00

00
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100
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000

00

0
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Example: Volume of Q(−1, 15)

10
Γ =

b1 b2

PΓ =
1

2
· 1
2
·b1b2 ·N0,4(b1, b1, b2, 0)N1,1(b2) =

1

384
·b31b32+

1

768
·b1b52

Z(PΓ) =
1

384
· 3! · ζ(4) · 3! · ζ(4) + 1

768
· ζ(2) · 5! · ζ(6)

=
71

1814400
· π8.

Vol(Γ) =
142

297675
· π8

VolQ(−1, 15) =
∑

Γ∈G2,1

Vol(Γ) =
29

840
· π8
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Meanders

Counting meanders with n minimal arcs corresponds to counting
square-tiled surfaces in Q0,n with one horizontal and one vertical
cylinder. Its volume contribution corresponds to the asymptotics

The distribution of single horizontal and vertical cylinders are
asymptotically independent.

Mn(N) =
2(n + 1)Cyl1,1Q(−1n+1, 1n−3)

(n + 1)!(n − 3)!(4n − 8)
· N2n−4 + o(N2n−4)
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The distribution of single horizontal and vertical cylinders are
asymptotically independent.

Cyl1,1Q(−1n+1, 1n−3)

Cyl1Q(−1n+1, 1n−3)
=

Cyl1Q(−1n+1, 1n−3)

VolQ(−1n+1, 1n−3)

Mn(N) =
2(n + 1)Cyl1,1Q(−1n+1, 1n−3)

(n + 1)!(n − 3)!(4n − 8)
· N2n−4 + o(N2n−4)
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The end

Thankyou!
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