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Meanders

A meander is a simple closed
curve in the plane transversally
intersecting the horizontal axis.

2/31



Meanders

A meander is a simple closed
curve in the plane transversally
intersecting the horizontal axis.

Let M(N) be the number of
isotopy classes of meanders with
2N crossings.

2/31



Meanders

A meander is a simple closed
curve in the plane transversally
intersecting the horizontal axis.

Let M(N) be the number of
isotopy classes of meanders with
2N crossings.

The asymptotics of M(N) as
N — oo remains conjectural.

2/31



Translation surfaces/Abelian differentials

A is a polygon in
the plane with equal and opposite
sides identified via translation.
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A is a polygon in
the plane with equal and opposite
sides identified via translation.

The metric is everywhere flat except
at the vertices where there are cone
points.
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A is a polygon in
the plane with equal and opposite
sides identified via translation.

The metric is everywhere flat except
at the vertices where there are cone
points.

Equivalently: it is a Riemann surface
X equipped with an Abelian
differential w € HO(X, Kx).
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Translation surfaces/Abelian differentials

A is a polygon in
the plane with equal and opposite
sides identified via translation.

The metric is everywhere flat except
at the vertices where there are cone

®in points.

Vi

y & Equivalently: it is a Riemann surface
Va y X equipped with an Abelian
V6 differential w € HO(X, Kx).
V3
Cone points with angle 27(k + 1) <
Vs order k singularities of w.
Ve Vi
v3 Riemann-Roch: ). ki = 2g — 2.
Va
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Half-translation surface/quadratic differentials

A is a
v3 polygon in the plane with equal and
opposite sides identified via
va 4 v translation and rotation by 7.
V2 V2
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Half-translation surface/quadratic differentials

A is a
v3 polygon in the plane with equal and
opposite sides identified via
va 4 v translation and rotation by 7.
Equivalently: it is a marked Riemann
%) V2

surface (X, p1, ..., pn) equipped

— —¢ with a quadratic differential
v vi g € HO(X, KgZ(p1 + -~ + pn))-
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Half-translation surface/quadratic differentials

A is a
v3 polygon in the plane with equal and
opposite sides identified via
va 4 v translation and rotation by 7.
Equivalently: it is a marked Riemann
surface (X, p1, ..., pn) equipped
> ) with a quadratic differential
v " q € HO(X, K*(p1+ -+ pn))-

V2 V2

Cone points with angle m(k +2) <>
‘ order k singularities of q.
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Half-translation surface/quadratic differentials

V3

Va

V2 V2

=Y
S AN

A is a
polygon in the plane with equal and
opposite sides identified via
translation and rotation by .

Equivalently: it is a marked Riemann
surface (X, p1, ..., pn) equipped
with a quadratic differential

g€ HO (X, Kg2(p1+ -+ + pn)).

Cone points with angle m(k +2) <>
order k singularities of q.

Simple poles +» cone angles of 7.

Riemann-Roch: ) . kj = 4g — 4.
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Moduli space and strata

Consider all translation resp
half-translation surfaces: H,
resp. Qg » — the moduli space.
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Moduli space and strata
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Consider all translation resp.
half-translation surfaces: H,
resp. Qg » — the moduli space.

Stratified by singularity orders.
H(p) resp. Q(p) are “subsets”
with singularity orders encoded
by a partition pu.
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half-translation surfaces: H,
resp. Qg » — the moduli space.

Stratified by singularity orders.
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with singularity orders encoded
by a partition pu.
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Moduli space and strata
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®4r, k=2
or, k=-1
or, k=-1

Q(—12,2)

Consider all translation resp.
half-translation surfaces: H,
resp. Qg » — the moduli space.

Stratified by singularity orders.
H(p) resp. Q(p) are “subsets”
with singularity orders encoded
by a partition pu.

Strata are complex orbifolds of
dimension 2g + ¢(11) — 1 resp.
2g + () — 2.
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Moduli space and strata

v3

V4 V4 V3

V2 V2

Vi
®4r, k=2
or, k=-1
or, k=-1

Q(—12,2)

Consider all translation resp.
half-translation surfaces: H,
resp. Qg » — the moduli space.

Stratified by singularity orders.
H(p) resp. Q(p) are “subsets”
with singularity orders encoded
by a partition pu.

Strata are complex orbifolds of
dimension 2g + ¢(11) — 1 resp.
2g + () — 2.

Locally modelled on C¥ - edges
define coordinates, hence there is
a natural volume.
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The Masur-Veech volume

Theorem (Masur, Veech)
The space of flat surfaces with fixed finite area has finite volume.

1) = { ) e n0): 5 [ wrw=1]
Ql(u)Z{(X q) € Q(u /!q!—1/2}

It can be shown that

Vol Qu () = 2dime Q() - im0 - #ST(Q(u).2N)

number of square-tiled
surfaces built from at
most 2/ squares
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Volume computation preview

To compute volumes, we will:
» Associate polynomials Pr to different volume contributions
» Apply an operator Z to evaluate volumes
» Sum all volume contributions

Z(b3b5) = 21-51- ¢(3) - C(6):
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Goal: Compute #ST(Q(n),2N)
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Cylinder decomposition

Every square-tiled surface has a unique horizontal cylinder
decomposition. Consider the following square-tiled surface in

Q(—12,12).

KV1
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Cylinder decomposition

Every square-tiled surface has a unique horizontal cylinder
decomposition. Consider the following square-tiled surface in

Q(—12,12).

O—O <Rl oo
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Cylinder decomposition

Every square-tiled surface has a unique horizontal cylinder
decomposition. Consider the following square-tiled surface in

Q(—12,12).

o

O—O %)

o0 C R[l | 0 @ [3?]

(17]

Note: Order k singularities correspond to (k + 2)-valent vertices.
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Cylinder Decomposition




Ribbon graphs

Ribbon graphs are graphs endowed with a cyclic ordering of
half-edges at the vertices.

They define an embedding of the underlying graph onto an
oriented surface.

Figure: Embedding of Gg into a torus with 1 boundary
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Metric ribbon graphs
We count metrics on ribbon graphs with fixed boundary lengths.
Let Ag be the incidence matrix of a ribbon graph G. The space of

metrics is the convex polytope

Ps(b) = {x € Ri(c) b= Agx}.
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Let Ag be the incidence matrix of a ribbon graph G. The space of
metrics is the convex polytope
Pc(b) = {x Ri(c) b= Agx}.
The number of integer metrics is

Ne(b) = # (PG(b) N ZE(G)) .

It is a polynomial in principal strata, and in general a piecewise
polynomial.
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Metric ribbon graphs

We count metrics on ribbon graphs with fixed boundary lengths.
Let Ag be the incidence matrix of a ribbon graph G. The space of
metrics is the convex polytope

Ps(b) = {x € Ri(c) b= Agx}.
The number of integer metrics is
Ne(b) = # (PG(b) N z_’i(G)) .

It is a polynomial in principal strata, and in general a piecewise
polynomial.  The weighted count of metric ribbon graphs with

valence & is N (b)
K o G
Nealb) = 2 ey

GeRy,
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Example of metric ribbon graphs

The incidence matrix is (2 2 2). The number of integer metrics
correspond to positive integer solutions to x; + x2 + x3 = b/2.

No(by) = <b1/2 - 1) _ (b1 —4)(b1 —2)

2 8
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Counting square-tiled surfaces of type I

Lemma: If x has at least one odd component, the total number of
square-tiled surfaces in Q(y) of type ' € G , constructed from at
most 2N squares of size (1/2 x 1/2) is

> I b II Mo
bHENE ) ecE(T) veV(r)

b-H<N
bely

#STr(Q(u),2N) =

|At

where N, (b) counts the number of ways cylinders of width b; can
be glued at vertex v. In particular, it is

NV(b) = Ng,v,nv((be)eeEv(r))
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Proof
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Special case

Lemma
Suppose the top degree of the summand is a polynomial. Define

1
Pr= vt \Aut I e T1 Mo

ecE(I) vev(r)

The volume contribution of type I is given by
Vol(T') = G - Z(Pr)

where Z is defined by

k k
z:J[6™ e [ mit - ¢(mi+1).
i=1 i=1
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Why does the zeta function appear?

A small case:

DI

b,HEN HeN beN
bH<N b<N/H
N/H
~ Z / b™db
Hen /0
NmHl 1

m—+1
m+1 et H
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Extention to a piecewise polynomial
Lemma
Suppose Pr is a piecewise polynomial of the form
by - B Ny, —opy)
The volume contribution of type " is given by
Vol(IN) = G - Z(Pr)
where Z is defined by
k
Z (H b;ni]l{bl_2b2}> = (my+ mp)!-&(m1, m2) H m;!-¢(m;+1),
i=1 i>3

E(my, mp) == 2™¢(my + mp) — (2™ + 27N (my + ma + 1).
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Example: Q(—12,2)

9[12 U1 P Crag - 2(Pr)
[1%,4]

A

4 [

o 0

(4 7

10
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Example: Q(—12,2)
9[12 4P Chiz,a - Z(Pr)
24| L1 b N (b, by)
_ B
0 =72
40| L Lk, N (b, by, bo) - AR (B
o_.< Y S} 102 03( 1, M1, 2) (2)
0 0 = b “Lyp,—2m}
4] 12 711.1.[)1 N[4](b1) N[ll(b1)
1 0 :%125
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Example: Q(—12,2)

9[12 4P Chiz,a - Z(Pr)

2

2
0 = %% — 8¢(3)
W Ll pp,. N(Ef‘;(bl,bl,bz)-Né,lf](bz)
0 0 | =521, 0 80(2) - %(3)
W | L1 by N (b N ()
10 = f6 = ¢(3)
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Example: Q(—12,2)
g[l2 4] Pr — C[1274] - Z(Pr)
e | L1, ./\/’ég’ﬂ'](bl, bi)
o | = %% — 8¢(3)
2
[4] [12] 2—11 % b1b2 Nég(blablabz) N(gill](b2)
0 0 = % {b2:2b1} — 8C(2) * 9<(3)
W) 2% Lb N[‘”(b1) N ()
) 472
Vol Q(—12,2) = 8((3) +8((2) — 9%¢(3) +¢(3) =
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Volumes of principal strata

Principal strata of Q, , take the form Q(—1" 14—4+m),
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Volumes of principal strata

Principal strata of Q, , take the form Q(—1" 14—4+m),

Simple poles <> univalent vertices
Simple zeros < trivalent vertices
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Volumes of principal strata

Principal strata of Q, , take the form Q(—1" 14—4+m),

Simple poles <> univalent vertices
Simple zeros < trivalent vertices

There is a deep connection between counts of trivalent ribbon
graphs (which can be extended to include univalent vertices) and
intersection theory on the moduli space of curves due to
Kontsevich.
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Intersection Numbers

The tautological line bundles £; are given by T X at X € Mg ,.
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d 2
<Td1"'Tdn>—/ (IR T
Mg
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In 1991, Witten conjectured that a generating function involving
the intersection numbers satisfies a certain series of differential
equations called the KdV hierarchy from mathematical physics.
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Intersection Numbers

The tautological line bundles £; are given by T X at X € Mg ,.
The 1-classes v; are given by c1(L;) € H*(Mg n; Q).

The intersection numbers for dy +---+d, =3g — 3+ n are
(Tdy -+~ Tdy) / w R

Examples: (73) = 1 and (11) = &.

In 1991, Witten conjectured that a generating function involving
the intersection numbers satisfies a certain series of differential
equations called the KdV hierarchy from mathematical physics.

In 1992, Kontsevich proved this conjecture... using ribbon graphs!
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Counts of trivalent ribbon graphs
Kontsevich proves the Main Identity:
(Tay -~ Tay) T4 (2d0)! 1 1

2 s 1zan = 2. e 1,_:[ e

deNg i=1 GEREH,
|d|=3g—3+n
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Counts of trivalent ribbon graphs
Kontsevich proves the Main Identity:
(Tay -~ Tay) T4 (2d0)! 1 1

2 s 1zan = 2. e 1,_:[ e

deNg i=1 GEREH,
|d|=3g—3+n

Define the Kontsevich volume polynomials

(Tdy -+ 7d,) 2d 2d,
Ng’”(bl""’b”): Z 25g—6+12nd1|...d Ib1 L by
deNg ' m

d|=3g—3+n
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Counts of trivalent ribbon graphs
Kontsevich proves the Main Identity:
(Tay -~ Tay) T4 (2d0)! 1 1

2 s 1zan = 2. e 1,_:[ e

deNg i=1 GEREH,
|d|=3g—3+n

Define the Kontsevich volume polynomials

_ (Tdy -+ Tdy) 2d; 2d,
Ng,n(blv"'abn)_ Z 25g—6+2n1...d !bl S by
deNg n
d|=3g—3+n

Using Norbury’s lattice point counts, we obtain:

Ng.n(b1,...,bn) = Ngn(b1,...,bn)+ lower order terms.
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comb

The combinatorial moduli space Mg’}
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The combinatorial moduli space M;O,r,nb

Resp, g = 2miby
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The combinatorial moduli space Mgo,r,“b

Resp, g = 2miby
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The combinatorial moduli space Mgo,r,“b

Mg xRl = {decorated curves}

Resp, g = 2miby
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The combinatorial moduli space Mg’}

Mg xRl = {decorated curves}

I

) {Strebel differentials}
Resp, g = 2miby
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The combinatorial moduli space Mg’}

Mg xRl = {decorated curves}

I

{Strebel differentials}

comb _ FOR
M = {metric ribbon graphs}
b
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The combinatorial moduli space Mgo,r,“b

Mg xRl = {decorated curves}

I

{Strebel differentials}

I

Resp, g = 2miby

comb _ R
M = {metric ribbon graphs}
= 11 Pe/Aut(G)
GERg,n
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Kontsevich's proof (part 1)

Consider the projection 7 : MZ,?,r,nb = Mg xR — RO
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We are interested in the volume of MM (b) = 71(b) = M, ,
— the subspace of metric graphs with boundary lengths b.
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Kontsevich's proof (part 1)

Consider the projection 7 : Mcomb = Mg xR — RO

We are interested in the volume of MM (b) = 71(b) = M, ,
— the subspace of metric graphs with boundary lengths b.

Kontsevich constructs a symplectic form € which can be written as

> b?1i on each fibre MEMb(b).

Integrating the top form expQ = % gives the symplectic
volume:
s (o Tdy) 1 d dn
ng(b):/ eXpQ: Z ﬁb bn .
Me,n(b) deNg 1
|d|=3g—3+n
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Kontsevich's proof (part 2)

Pc
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Kontsevich's proof (part 2)

Pc

Pc(b)
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Kontsevich's proof (part 2)

P
The top form exp €2 defines the
symplectic fibre volume V;n(b).

exp €2

Pc(b)
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Kontsevich's proof (part 2)

exp €2

Pc

Pc(b)

The top form exp €2 defines the

symplectic fibre volume V;n(b).

Taking the Laplace transform
allows us to integrate the top
form exp Q2 in Mz‘?}?b.
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Kontsevich's proof (part 2)

Pc

The top form exp €2 defines the

symplectic fibre volume V;n(b).

Taking the Laplace transform
allows us to integrate the top
form exp Q2 in Mz‘?}?b.

The top form A\, d/(e) defines
the Euclidean volume V;n(b).
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Kontsevich's proof (part 2)

Pc

The top form exp €2 defines the
symplectic fibre volume V;n(b).

Taking the Laplace transform
allows us to integrate the top
form exp Q2 in Mz‘?}?b.

The top form /\_ d/(e) defines
70 the Euclidean volume V;n(b).

Kontsevich proves the ratio of measures is p = 2°%675%2" hence
Vg’fn(b) is a constant multiple p of Vgsm(b).
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Kontsevich's proof (part 2)

Pc

The top form exp €2 defines the
symplectic fibre volume V;n(b).

Taking the Laplace transform
allows us to integrate the top
form exp Q2 in Mz‘?}?b.

The top form /\_ d/(e) defines
70 the Euclidean volume V;n(b).

Kontsevich proves the ratio of measures is p = 2°%675%2" hence
Vg’fn(b) is a constant multiple p of Vgsm(b).

We now know how to count trivalent ribbon graphs!
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Counting trivalent ribbon graphs with univalent vertices

We also need to count ribbon graphs with univalent vertices.
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Counting trivalent ribbon graphs with univalent vertices

We also need to count ribbon graphs with univalent vertices.

Theorem

Let Ng np(bi,...,b,) be the weighted count of trivalent integral
metric ribbon graphs with p univalent vertices. Then

N, bi,....by) =N, bi,...,bn0,...,0)+/lower order terms.
g,n,p( 1 n) g7n+p( 1 n )

p
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Counting trivalent ribbon graphs with univalent vertices

We also need to count ribbon graphs with univalent vertices.

Theorem
Let Ng np(bi,...,b,) be the weighted count of trivalent integral
metric ribbon graphs with p univalent vertices. Then

N, bi,....by) =N, bi,...,bn0,...,0)+/lower order terms.
g,n,p( 1 n) g7n+p( 1 n )

. . . p
This uses the string equation

n

(T0Tdy ** Tay)gunt1 = D _(Tah "+ Tdym1** Tdy)gm
i=1

and Kontsevich's Main Identity.
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Volume formula for the principal strata

Theorem
The volume of the principal stratum Q(—1",1%=4+m) js

Vol Q(—1",1% ") = G n - >~ Z(Pr)
regg,n

where

1 1
—2#V(N-1 |Aut(T))

) H be- H Ngv,nv+pv((be)eeEv(r)>Opv)

ecE(T) veV(l)

Pr

and
 2%870F2(4g — 4+ p)!

Can =
& (6g — 7+ 2n)!
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Example: Volume of Q(—1, 1)
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Example: Volume of Q(—1,1°)
Stable graphs in G 1:

0 0
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Example: Volume of Q(—1, 1)
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Example: Volume of Q(—1, 1)

b
=
0 1
11
Pr = E'i'ble'NOA(bl, b1, ba, 0)Ny 1(b2)
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Example: Volume of Q(—1, 1)

Pr = -b1bo-Noa(b1, b, b, 0)Ny 1(b2) = Z b3b2+ b1 b3

N \

11
2 38 768
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Example: Volume of Q(—1, 1)

1
Pr = E b1b2 No 4([)17 b1, b2,0)/V171(b2) 1 b3b2+ b1b2

N \

38 768

B(Pr) = 55731 C(4) 31 C(4) + 5 C(2) 51 ((6)
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Example: Volume of Q(—1, 1)

b
r=C_»—e
0 1
1
sz—bbN by, by, by, 0)Ny 1(b -b3b3 b b3
r=55bib 0,4(b1, b1, by, 0)Ny 1(b2) = 384 2+768 1b3

B(Pr) = 55731 C(4) 31 C(4) + 5 C(2) 51 ((6)
71

_ 8
~ 1814400 "
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Example: Volume of Q(—1, 1)

b
r=C_ 9
0> 1
1
Pr=75 5 +biba-No.a(br, b1, by, 0)N11(b2) =
Z(Pr) = 1. ¢(4)-3'-¢(4)
T/~ 384

B 71 )

~ 1814400

142

Vol(l) = 97675 ™

3
384 bt b2+768 bib3
+ s ¢(2) 5 ¢(6)
768 '
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Example: Volume of Q(—1, 1)

b
r—C_»—e
o> 1
1 3
Pr — E 5 b1b2 N04(b17b17b270)/v1,1(b2) 384 b b2+768 b1b2
Z(Pr) = 131 ¢(4) 31 C(4) + - - ¢(2) - 51 (6)
r 384 768 -
B 71 )
~ 1814400
142
Vol(T') = -8
ol = 597675 ™
Vol Q(~1,1%) =}~ Vol() = —= - =°

reg.1 840
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Meanders

Counting meanders with n minimal arcs corresponds to counting
square-tiled surfaces in Qg , with one horizontal and one vertical
cylinder. Its volume contribution corresponds to the asymptotics
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Meanders

Counting meanders with n minimal arcs corresponds to counting
square-tiled surfaces in Qg , with one horizontal and one vertical
cylinder. Its volume contribution corresponds to the asymptotics

The distribution of single horizontal and vertical cylinders are
asymptotically independent.
Cyly; Q(—=1""1,1"3)  ¢yly Q(—1"*1,173)
Cyl; Q(—1nt1 1n=3) — Vol Q(—1n+1 1n-3)
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Meanders

Counting meanders with n minimal arcs corresponds to counting
square-tiled surfaces in Qg , with one horizontal and one vertical
cylinder. Its volume contribution corresponds to the asymptotics

The distribution of single horizontal and vertical cylinders are
asymptotically independent.

2(n+1) Cyly ; Q(—1"1,1773)

(n+1)!(n—3)1(4n —8) . N2n_4+O(N2”_4)

Mn(N) =

30/31



Thankyou!

«Or «Fr «=»

«E>»
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